SUMMARY REPORT 189 ASPEN STREET (FORMERLY 376 ASPEN STREET) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 189 ASPEN STREET (FORMERLY 376 ASPEN STREET) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 189 Aspen Street (Formerly 376 Aspen Street) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	
2.0	SAMPLING ACTIVITIES AND RESULTS	3
2.1	UST REMOVAL AND SOIL SAMPLING	.3
2.2	SOIL ANALYTICAL RESULTS	.4
2.3	GROUNDWATER SAMPLING	.4
2.4	GROUNDWATER ANALYTICAL RESULTS	.5
3.0	PROPERTY STATUS	. 5
4.0	REFERENCES	. 5

Tables

Table 1	Laboratory Analytical Results - Soil
Table 2	Laboratory Analytical Results - Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 189 Aspen Street (Formerly 376 Aspen Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 189 Aspen Street (Formerly 376 Aspen Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 376 Aspen Street* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

On March 12, 2012, a single 280 gallon heating oil UST was removed from the front landscaped bed area adjacent to the driveway at 189 Aspen Street (Formerly 376 Aspen Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed, cleaned, and shipped offsite for recycling. There was no visual evidence

(i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'11" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 189 Aspen Street (Formerly 376 Aspen Street) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated May 15, 2014, SCDHEC requested an IGWA for 189 Aspen Street (Formerly 376 Aspen Street (Formerly 376 Aspen Street) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On May 28, 2015, a temporary monitoring well was installed at 189 Aspen Street (Formerly 376 Aspen Street), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 189 Aspen Street (Formerly 376 Aspen Street) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 189 Aspen Street (Formerly 376 Aspen Street). This NFA determination was obtained in a letter dated February 22, 2016. SCDHEC's NFA letter is provided in Appendix D.

4.0 **REFERENCES**

- Marine Corps Air Station Beaufort, 2012. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 376 Aspen Street, Laurel Bay Military Housing Area*, June 2012.
- Resolution Consultants, 2015. *Initial Groundwater Investigation Report May and June 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, October 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1Laboratory Analytical Results - Soil189 Aspen Street (Formerly 376 Aspen Street)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 03/12/12
Volatile Organic Compounds Analyze	d by EPA Method 8260B (mg/kg)	
Benzene	0.003	0.00113
Ethylbenzene	1.15	0.167
Naphthalene	0.036	0.576
Toluene	0.627	0.00433
Xylenes, Total	13.01	0.451
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8270D (mg/kg)	
Benzo(a)anthracene	0.66	0.629
Benzo(b)fluoranthene	0.66	0.183
Benzo(k)fluoranthene	0.66	0.192
Chrysene	0.66	0.533
Dibenz(a,h)anthracene	0.66	ND

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2Laboratory Analytical Results - Groundwater189 Aspen Street (Formerly 376 Aspen Street)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 05/28/15
Volatile Organic Compounds Analyzed	l by EPA Method 8260B (µg	/L)	
Benzene	5	16.24	ND
Ethylbenzene	700	45.95	ND
Naphthalene	25	29.33	ND
Toluene	1000	105,445	ND
Xylenes, Total	10,000	2,133	ND
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270) (μg/L)	
Benzo(a)anthracene	10	NA	0.39
Benzo(b)fluoranthene	10	NA	0.19
Benzo(k)fluoranthene	10	NA	0.064
Chrysene	10	NA	0.27
Dibenz(a,h)anthracene	10	NA	ND

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

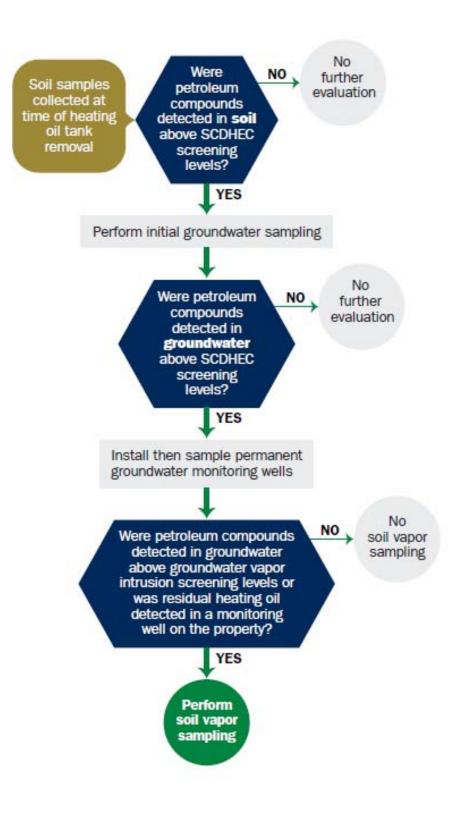
EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level


SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received State Use Only

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	manding Officer Attn: NR	EAO (Craig Ehde)
Owner Name (Corporation,	Individual, Public Agency, Other)	
P.O. Box 55001		
Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita	ary Housing Area, Marin	<u>ie Corps Air Sta</u>	tion, Beaufort, SC
Facility Name or Company	y Site Identifier		
376 Aspen Street Street Address or State Ro	, Laurel Bay Military	Housing Area	<u></u>
Succi Address of State Ru	au (as applicable)		
Beaufort,	Beaufort		
City	County		
			Attachmont ?

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on _______ at Permit ID Number ______ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this ______ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Злонарен
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
Е·	Month/Year of Last Use	Unknown
F.	Depth (ft.) To Base of Tank	5'11"
G.	Spill Prevention Equipment Y/N	No
H·	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J _.	Date Tanks Removed/Filled	3/12/2012
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

376Aspen

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 376Aspen was removed from the ground, cleaned and recycled. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) Contaminated water was pumped from the tank and disposed by MCAS.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		376Aspen
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
Ŧ		

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single w	all steel
and formerly contained fuel oil for heating. These UST	's were
installed in the late 1950s and last used in the mid 1	.980s.

IX. SITE CONDITIONS				
		 Yes	No	Unk

Γ

•

OTTE CONDUCTOR

A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?	х	
If yes, indicate depth and location on the site map.		
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?	х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)		
C. Was water present in the UST excavation, soil borings, or trenches?	х	
If yes, how far below land surface (indicate location and depth)?		
D. Did contaminated soils remain stockpiled on site after closure?	х	
If yes, indicate the stockpile location on the site map.		
Name of DHEC representative authorizing soil removal:		
· · · · · · · · · · · · · · · · · · ·		
E. Was a petroleum sheen or free product detected on any excavation or boring waters?	х	
If yes, indicate location and thickness.		

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

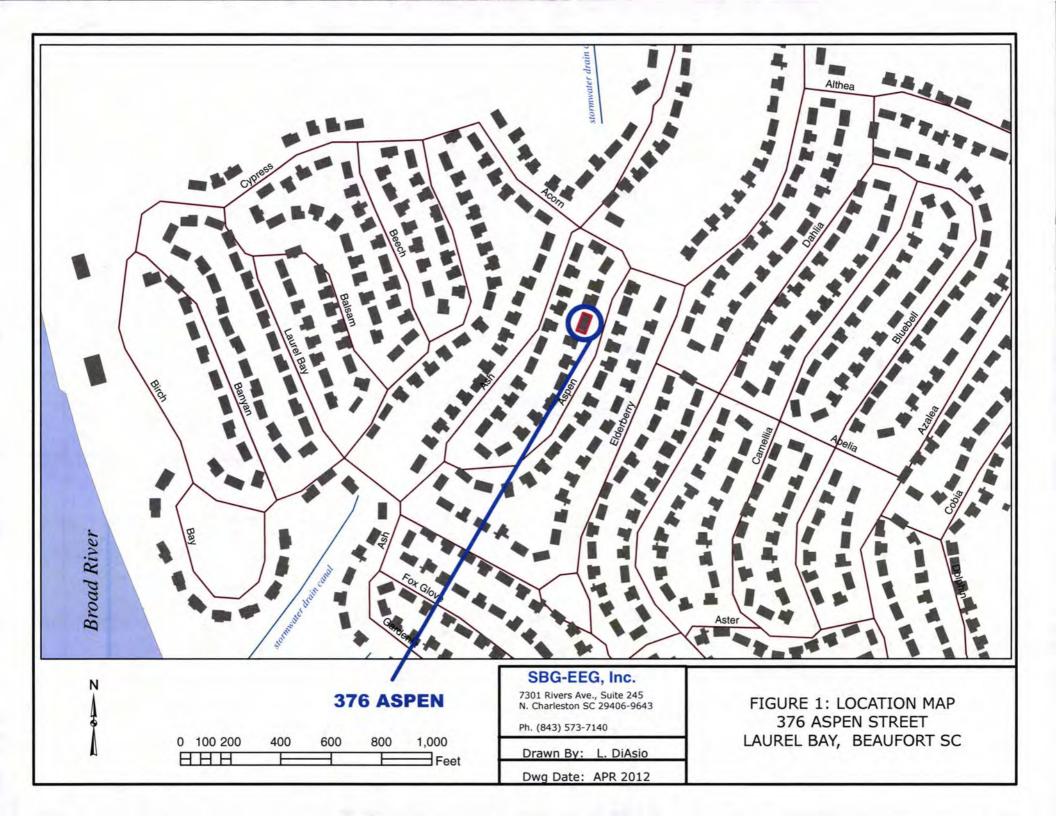
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
376 Aspen	Excav at fill end	Soil	Sandy	5'11"	3/12/12 1500 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

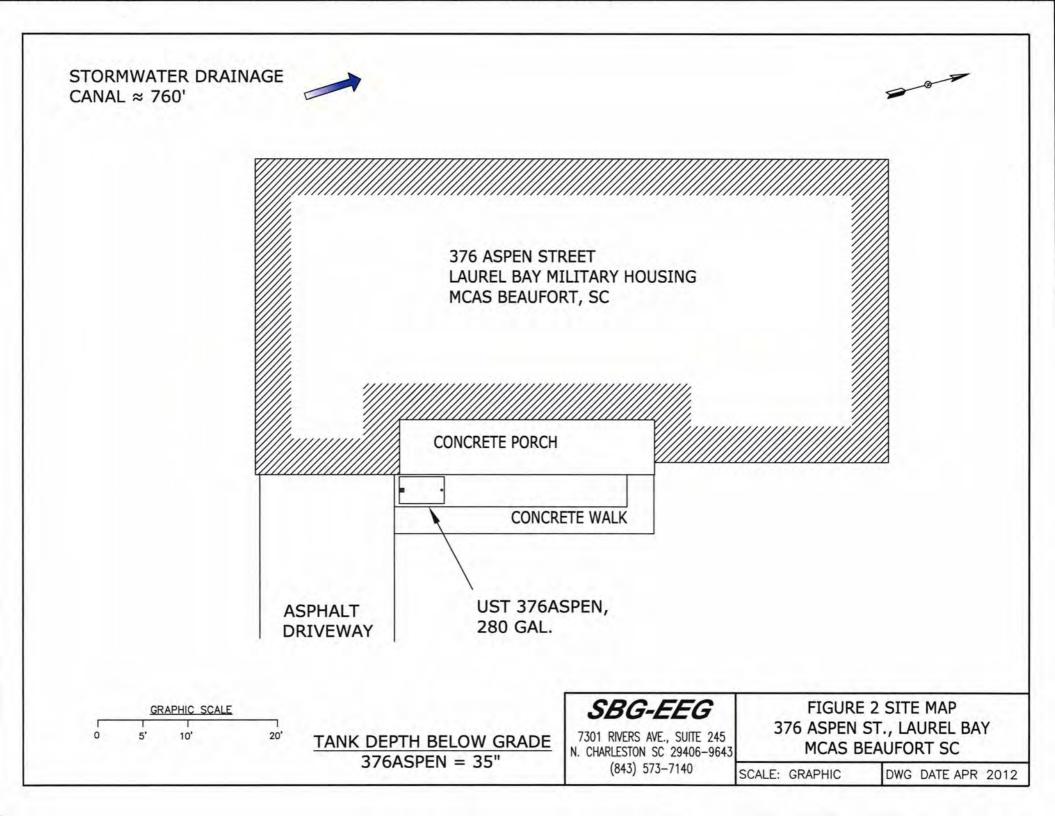
* = Depth Below the Surrounding Land Surface

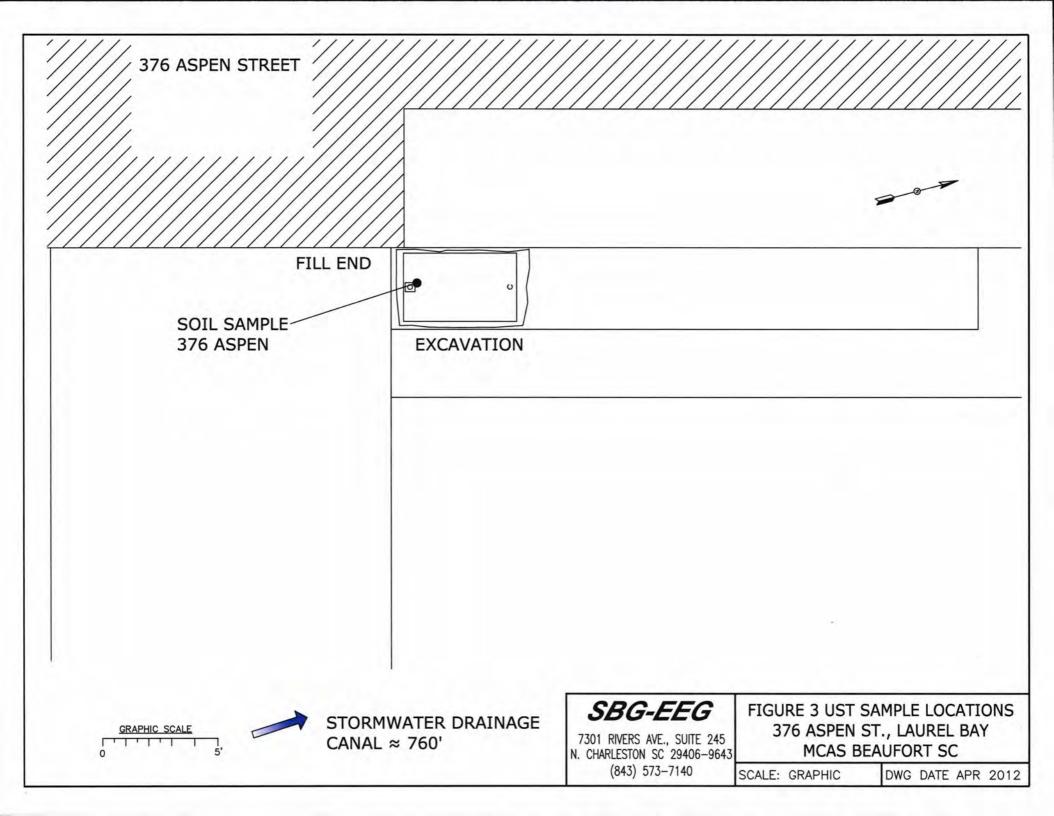
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
А.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*~ 760' to drainag	e can	al
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, el	ectri	city,
	cable, & fiber op	tic	
	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or		х
	concrete?		
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 376Aspen.

Picture 2: UST 376Aspen excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

UST UST	376Aspen	· · · · · · · · · · · · · · · · · · ·	<u> </u>	T	
CoC		·			
Benzene	0.00113 mg/	kg			
Toluene	0.00433 mg/	кg			
Ethylbenzene	0.167 mg/kg				
Xylenes	0.451 mg/kg				
Naphthalene	0.576 mg/kg				
Benzo (a) anthracene	0.629 mg/kg				
Benzo (b) fluoranthene	0.183 mg/kg				
Benzo (k) fluoranthene	0.192 mg/kg				
Chrysene	0.533 mg/kg				
Dibenz (a, h) anthracene	ND				
TPH (EPA 3550)					
		r	1	- ···	
CoC					
Benzene					
Toluene					
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W -1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Nashville

2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWC2199

Client Project/Site: [none] Client Project Description: Laurel Bay Housing Project

For:

LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask-

ne

Expert

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Em fa Hay

Authorized for release by: 3/30/2012 12:52:30 PM

Ken A. Hayes Senior Project Manager ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1
2
3

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	1
Client Sample Results 5	5
QC Sample Results	7
QC Association 1	12
Chronicle 1	13
Method Summary 1	14
Certification Summary 1	15
Chain of Custody 1	16

Sample Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none] TestAmerica Job ID: NWC2199

ab Sample ID	Client Sample ID	Matrix	 Collected	Received
WC2199-01	376 Aspen	Soil	03/12/12 15:00	03/16/12 08:20
WC2199-02	375 Aspen	Soil	03/13/12 14:00	03/16/12 08:20

Qualifiers

Project/Site: [r	none]	
Qualifiers		
GCMS Volatil	es	4
Qualifier	Qualifier Description	4
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	2
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.	
GCMS Semiv	olatiles	1.6
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
ac	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: NWC2199

Client Sample ID: 376 Asp late Collected: 03/12/12 15:00 late Received: 03/16/12 08:20	en						Lab Samp	le ID: NWC2 Mat Percent Sc	rix: Soi
Method: SW846 8260B - Volati	ile Organic Comp	ounds by E	PA Method 82	60B					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00113	J	0.00205	0.00113	mg/kg dry	ä	03/12/12 15:00	03/23/12 15:36	1.00
Ethylbenzene	0.167		0.00205		mg/kg dry	12	03/12/12 15:00	03/23/12 15:36	1.00
Naphthalene	0.576	E	0.00512		mg/kg dry	11	03/12/12 15:00	03/23/12 15:36	1.00
Toluene	0.00433		0.00205		mg/kg dry	a	03/12/12 15:00	03/23/12 15:36	1.0
Xylenes, total	0.451		0.00512	0.00256	mg/kg dry	a	03/12/12 15:00	03/23/12 15:36	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	102		70 - 130				03/12/12 15:00	03/23/12 15:36	1.0
Dibromofluoromethane	99		70 - 130				03/12/12 15:00	03/23/12 15:36	1.0
Toluene-d8	133	ZX	70 - 130				03/12/12 15:00	03/23/12 15:36	1.0
4-Bromofluorobenzene	283	ZX	70 - 130				03/12/12 15:00	03/23/12 15:36	1.0
Method: SW846 8270D - Polya									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.153		0.0793		mg/kg dry	ä	03/17/12 12:06	03/17/12 21:49	1.0
Acenaphthylene	ND		0.0793		mg/kg dry	X	03/17/12 12:06	03/17/12 21:49	1.0
Anthracene	0.342		0.0793		mg/kg dry	ä	03/17/12 12:06	03/17/12 21:49	1.0
Benzo (a) anthracene	0.629		0.0793		mg/kg dry	12	03/17/12 12:06	03/17/12 21:49	1.0
Benzo (a) pyrene	0.188		0.0793		mg/kg dry	a	03/17/12 12:06	03/17/12 21:49	1.0
Benzo (b) fluoranthene	0.183		0.0793		mg/kg dry	ø	03/17/12 12:06	03/17/12 21:49	1.0
Benzo (g,h,i) perylene	0.0442	J	0.0793		mg/kg dry		03/17/12 12:06	03/17/12 21:49	1.0
Benzo (k) fluoranthene	0.192		0.0793		mg/kg dry	0	03/17/12 12:06	03/17/12 21:49	1.0
Chrysene	0.533		0.0793		mg/kg dry		03/17/12 12:06	03/17/12 21:49	1.0
Dibenz (a,h) anthracene	ND		0.0793		mg/kg dry	n	03/17/12 12:06	03/17/12 21:49	1.0
Fluoranthene	2.18		0.0793		mg/kg dry		03/17/12 12:06	03/17/12 21:49	1.0
Fluorene	0.464		0.0793		mg/kg dry	\$	03/17/12 12:06	03/17/12 21:49	1.0
Indeno (1,2,3-cd) pyrene	0.0497	J	0.0793		mg/kg dry	n	03/17/12 12:06	03/17/12 21:49	1.0
Naphthalene	0.231		0.0793		mg/kg dry	12	03/17/12 12:06	03/17/12 21:49	1.0
Phenanthrene	2.09		0.0793		mg/kg dry	ä	03/17/12 12:06	03/17/12 21:49	1.0
Pyrene	1.96		0.0793		mg/kg dry	12	03/17/12 12:06	03/17/12 21:49	1.0
1-Methylnaphthalene	1.05		0.0793	0.0402		¤	03/17/12 12:06	03/17/12 21:49	1.0
2-Methylnaphthalene	1.90		0.0793	0.0402	mg/kg dry	-	03/17/12 12:06	03/17/12 21:49	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	92		18 - 120				03/17/12 12:06	03/17/12 21:49	1.0
2-Fluorobiphenyl	67		14 - 120				03/17/12 12:06	03/17/12 21:49	1.0
Nitrobenzene-d5	75		17 - 120				03/17/12 12:06	03/17/12 21:49	1.0
Method: SW-846 - General Ch	emistry Paramete	ers							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
% Dry Solids	82.0		0.500	0.500	0/_	_	03/17/12 15:01	03/19/12 09:19	1.00

Naphthalene

Phenanthrene

1-Methylnaphthalene

2-Methylnaphthalene

Pyrene

Surrogate

5

Client Sample ID: 375 Aspen Lab Sample ID: NWC2199-02 Date Collected: 03/13/12 14:00 Matrix: Soil Percent Solids: 92.3 Date Received: 03/16/12 08:20 Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B Analyte **Result** Qualifier RL MDL Unit D Prepared Analyzed **Dil Fac** ND 12 03/13/12 14:00 03/23/12 16:06 1.00 Benzene 0.00214 0.00118 mg/kg dry a Ethylbenzene ND 0.00214 0.00118 mg/kg dry 03/13/12 14:00 03/23/12 16:06 1.00 ND 0.00536 12 03/23/12 16:06 Naphthalene 0.00268 mg/kg dry 03/13/12 14:00 1.00 ND 0.00214 n 03/13/12 14:00 03/23/12 16:06 1.00 Toluene 0.00118 mg/kg dry -12 0.00536 03/13/12 14:00 03/23/12 16:06 Xylenes, total ND 0.00268 mg/kg dry 1.00 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 70 - 130 03/13/12 14:00 03/23/12 16:06 1.00 1.2-Dichloroethane-d4 102 1.00 Dibromofluoromethane 100 70 - 130 03/13/12 14:00 03/23/12 16:06 Toluene-d8 104 70 - 130 03/13/12 14:00 03/23/12 16:06 1.00 4-Bromofluorobenzene 101 70 - 130 03/13/12 14:00 03/23/12 16:06 1.00 Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte Result ND 0.0725 0.0368 mg/kg dry n 03/17/12 12:06 03/17/12 22:14 1.00 Acenaphthene a 03/17/12 22:14 Acenaphthylene ND 0.0725 0.0368 mg/kg dry 03/17/12 12:06 1.00 ND 0.0725 0.0368 32 03/17/12 12:06 03/17/12 22:14 1.00 Anthracene mg/kg dry ND 0.0725 0.0368 mg/kg dry -03/17/12 12:06 03/17/12 22:14 1.00 Benzo (a) anthracene 0.0368 mg/kg dry 12 03/17/12 22:14 ND 0.0725 03/17/12 12:06 1.00 Benzo (a) pyrene Benzo (b) fluoranthene ND 0.0725 0.0368 mg/kg dry X 03/17/12 12:06 03/17/12 22:14 1.00 x 03/17/12 22:14 Benzo (g,h,i) perylene ND 0.0725 0.0368 mg/kg dry 03/17/12 12:06 1.00 ND 0 0725 0.0368 mg/kg dry a 03/17/12 12:06 03/17/12 22:14 1.00 Benzo (k) fluoranthene 12 Chrysene ND 0.0725 0.0368 mg/kg dry 03/17/12 12:06 03/17/12 22:14 1.00 -03/17/12 22:14 Dibenz (a,h) anthracene ND 0.0725 0.0368 mg/kg dry 03/17/12 12:06 1.00 12 1.00 ND 0.0725 0.0368 03/17/12 12:06 03/17/12 22:14 Fluoranthene ma/ka dry a Fluorene ND 0.0725 0.0368 mg/kg dry 03/17/12 12:06 03/17/12 22:14 1.00 Indeno (1,2,3-cd) pyrene ND 0.0725 0.0368 mg/kg dry -03/17/12 12:06 03/17/12 22:14 1.00

% Dry Solids	92.3		0.500	0.500	%		03/17/12 15:01	03/19/12 09:19	1.00
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW-846 - General (Chemistry Paramete	ers							
Nitrobenzene-d5	64		17 - 120				03/17/12 12:06	03/17/12 22:14	1.00
2-Fluorobiphenyl	55		14 - 120				03/17/12 12:06	03/17/12 22:14	1.00
Terphenyl-d14	83		18 - 120				03/11/12 12:06	03/11/12 22:14	1.00

0.0725

0.0725

0.0725

0.0725

0.0725

Limits

0.0368

0.0368

0.0368

0.0368

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry 0.0368 mg/kg dry 12

ä

11

32

22

03/17/12 12:06

03/17/12 12:06

03/17/12 12:06

03/17/12 12:06

03/17/12 12:06

Prepared

00/47/40 40.00

03/17/12 22:14

03/17/12 22:14

03/17/12 22:14

03/17/12 22:14

03/17/12 22:14

Analyzed

00/47/40 00.44

1.00

1.00

1.00

1.00

1.00

1 00

Dil Fac

ND

ND

ND

ND

ND

Qualifier

%Recovery

03/23/12 11:38

03/23/12 11:38

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

03/22/12 15:08

03/22/12 15:08

1.00

1.00

Prep Type: Total Prep Batch: 12C4640 P

Prep Type: Total

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

100

109

Lab Sample ID: 12C4640-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: V004988							F	rep Batch: 120	4640_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		03/22/12 15:08	03/23/12 11:38	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		03/22/12 15:08	03/23/12 11:38	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		03/22/12 15:08	03/23/12 11:38	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		03/22/12 15:08	03/23/12 11:38	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		03/22/12 15:08	03/23/12 11:38	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	109		70 - 130				03/22/12 15:08	03/23/12 11:38	1.00
Dibromofluoromethane	105		70 - 130				03/22/12 15:08	03/23/12 11:38	1.00

70 - 130

70 - 130

Lab Sample ID: 12C4640-BS1 Matrix: Soil Analysis Batch: V004988

Toluene-d8

4-Bromofluorobenzene

Analysis Batem Fee lees	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	53.5		ug/kg		107	75 - 127
Ethylbenzene	50.0	56.4		ug/kg		113	80 - 134
Naphthalene	50.0	68.8		ug/kg		138	69 - 150
Toluene	50.0	56.2		ug/kg		112	80 - 132
Xylenes, total	150	166		ug/kg		111	80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	110		70 - 130
Dibromofluoromethane	103		70 - 130
Toluene-d8	107		70 - 130
4-Bromofluorobenzene	106		70 - 130

Lab Sample ID: 12C4640-BSD1 Matrix: Soil

Analysis Batch: V004988

Analysis Batch: V004988							Prep Batch	: 12C4	640_P
and the second se	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	56.9		ug/kg		114	75 - 127	6	50
Ethylbenzene	50.0	60.0		ug/kg		120	80 - 134	6	50
Naphthalene	50.0	60.7		ug/kg		121	69 - 150	13	50
Toluene	50.0	59.8		ug/kg		120	80 - 132	6	50
Xylenes, total	150	177		ug/kg		118	80 - 137	6	50

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	102		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8	106		70 - 130
4-Bromofluorobenzene	106		70 - 130

TestAmerica Nashville 3/30/2012

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12C4640-MS1 Matrix: Soil								Client S	Sample ID: Matrix Spike Prep Type: Total
Analysis Batch: V004988								1	Prep Batch: 12C4640_P
the second second	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0450	0.0416		mg/kg dry	a	92	31 - 143
Ethylbenzene	ND		0.0450	0.0322		mg/kg dry	-	71	23 - 161
Naphthalene	ND		0.0450	0.00815		mg/kg dry	\$	18	10 - 176
Toluene	ND		0.0450	0.0352		mg/kg dry	12	78	30 - 155
Xylenes, total	ND		0.135	0.0963		mg/kg dry	a	71	25 - 162
	Matrix Spike	Matrix Spike							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	111		70 - 130
Dibromofluoromethane	98		70 - 130
Toluene-d8	100		70 - 130
4-Bromofluorobenzene	108		70 - 130

Lab Sample ID: 12C4640-MSD1 Matrix: Soil Analysis Batch: V004988

Analysis Batch: V004988									Prep Batch	: 12C4	640_P
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spil	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0461	0.0436		mg/kg dry	\$	95	31 - 143	5	50
Ethylbenzene	ND		0.0461	0.0367		mg/kg dry	32	80	23 - 161	13	50
Naphthalene	ND		0.0461	0.0107		mg/kg dry	ü	23	10 - 176	27	50
Toluene	ND		0.0461	0.0411		mg/kg dry	-	89	30 - 155	15	50
Xylenes, total	ND		0.138	0.114		mg/kg dry	x	82	25 - 162	17	50

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	104		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8	108		70 - 130
4-Bromofluorobenzene	108		70 - 130

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 12C3626-BLK1 Matrix: Soil Analysis Batch: 12C3626								mple ID: Metho Prep Typ Prep Batch: 12C	e: Total
		Blank		MDL	11-14		D		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Acenaphthylene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Anthracene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Benzo (a) anthracene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Benzo (a) pyrene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Benzo (b) fluoranthene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Benzo (g,h,i) perylene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Benzo (k) fluoranthene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Chrysene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Dibenz (a,h) anthracene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Fluoranthene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Fluorene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12C3626-BLK1							Client Sa	mple ID: Metho	d Blank
Matrix: Soil								Prep Typ	e: Total
Analysis Batch: 12C3626							F	Prep Batch: 120	3626_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Phenanthrene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
Pyrene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
1-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
2-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		03/17/12 12:06	03/17/12 18:33	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			10 100					004740 40.00	1.00

ourrogate	fortecorory and				
Terphenyl-d14	97	18 - 120	03/17/12 12:06	03/17/12 18:33	1.00
2-Fluorobiphenyl	81	14 - 120	03/17/12 12:06	03/17/12 18:33	1.00
Nitrobenzene-d5	91	17 - 120	03/17/12 12:06	03/17/12 18:33	1.00

Lab Sample ID: 12C3626-BS1 Matrix: Soil Analysis Batch: 12C3626

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 12C3626 P

Analysis Batch: 12C3626	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Acenaphthene	1.67	1.51	mg/kg wet	91	36 - 120
Acenaphthylene	1.67	1.46	mg/kg wet	.87	38 - 120
Anthracene	1.67	1.62	mg/kg wet	97	46 - 124
Benzo (a) anthracene	1.67	1.70	mg/kg wet	102	45 - 120
Benzo (a) pyrene	1.67	1.75	mg/kg wet	105	45 - 120
Benzo (b) fluoranthene	1.67	1.82	mg/kg wet	109	42 - 120
Benzo (g,h,i) perylene	1.67	1.56	mg/kg wet	94	38 - 120
Benzo (k) fluoranthene	1.67	1.49	mg/kg wet	89	42 - 120
Chrysene	1.67	1.63	mg/kg wet	98	43 - 120
Dibenz (a,h) anthracene	1.67	1.58	mg/kg wet	95	32 - 128
Fluoranthene	1.67	1.57	mg/kg wet	94	46 - 120
Fluorene	1.67	1.49	mg/kg wet	89	42 - 120
Indeno (1,2,3-cd) pyrene	1.67	1.61	mg/kg wet	97	41 - 121
Naphthalene	1.67	1.58	mg/kg wet	95	32 - 120
Phenanthrene	1.67	1.60	mg/kg wet	96	45 - 120
Pyrene	1.67	1.80	mg/kg wet	108	43 - 120
1-Methylnaphthalene	1.67	1.18	mg/kg wet	71	32 - 120
2-Methylnaphthalene	1.67	1.36	mg/kg wet	82	28 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	92		18 - 120
2-Fluorobiphenyl	68		14 - 120
Nitrobenzene-d5	71		17 - 120

Lab Sample ID: 12C3626-MS1 Matrix: Soil

Analysis Batch: 12C3626 Prep Batch: 12C3626 P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Added **Result Qualifier** %Rec Limits Analyte **Result Qualifier** Unit D 17 ND 2.15 1.95 91 19 - 120 Acenaphthene mg/kg dry -ND 25 - 120 Acenaphthylene 2.15 1.93 mg/kg dry 90 325 28 - 125 Anthracene ND 2.15 2.10 mg/kg dry 98 ND 2.15 2.22 12 103 23 - 120 Benzo (a) anthracene mg/kg dry

Client Sample ID: Matrix Spike

Prep Type: Total

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12C3626-MS1								Client S	Sample ID: Matrix	Spike
Matrix: Soil									Prep Type	: Total
Analysis Batch: 12C3626	Comolo	Sample	Spike	Matrix Spike	Matrix Cal	ka		3	Prep Batch: 12C3 %Rec.	8626_P
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Benzo (a) pyrene	ND	quanner	2.15	2.27	quanner	mg/kg dry		106	15 - 128	
Benzo (b) fluoranthene	ND		2.15	2.27		mg/kg dry	-	106	12 - 133	
Benzo (g,h,i) perylene	ND		2.15	2.07		mg/kg dry		96	22 - 120	
Benzo (k) fluoranthene	ND		2.15	2.03		mg/kg dry		95	28 - 120	
Chrysene	ND		2.15	2.17		mg/kg dry	a	101	20 - 120	
Dibenz (a,h) anthracene	ND		2.15	1.93		mg/kg dry		90	12 - 128	
Fluoranthene	ND		2.15	1.97		mg/kg dry	12	92	10 - 143	
Fluorene	ND		2.15	1.92		mg/kg dry	a	89	20 - 120	
Indeno (1,2,3-cd) pyrene	ND		2.15	2.04		mg/kg dry	a	95	22 - 121	
Naphthalene	ND		2.15	2.15		mg/kg dry	-	100	10 - 120	
Phenanthrene	ND		2.15	2.02		mg/kg dry	¤	94	21 - 122	
Pyrene	ND		2.15	2.41		mg/kg dry	æ	112	20 - 123	
1-Methylnaphthalene	ND		2.15	1.68		mg/kg dry		78	10 - 120	
2-Methylnaphthalene	ND		2.15	2.09		mg/kg dry	ü	97	13 - 120	
	Matrix Spike	Matrix Spike								
Sumomete	e/ Decovery		Limite							

Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	94		18 - 120
2-Fluorobiphenyl	69		14 - 120
Nitrobenzene-d5	78		17 - 120

Lab Sample ID: 12C3626-MSD1 Matrix: Soil

Analysis Batch: 12C3626

Analysis Batch: 12C3626									Prep Batch	1: 12C3	
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spil	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		2.16	1.57		mg/kg dry	12	73	19 - 120	22	50
Acenaphthylene	ND		2.16	1.50		mg/kg dry	-	69	25 - 120	25	50
Anthracene	ND		2.16	1.64		mg/kg dry	12	76	28 - 125	25	49
Benzo (a) anthracene	ND		2.16	1.79		mg/kg dry	\$	83	23 - 120	22	50
Benzo (a) pyrene	ND		2.16	1.88		mg/kg dry	a	87	15 - 128	19	50
Benzo (b) fluoranthene	ND		2.16	2.00		mg/kg dry	\$	93	12 - 133	13	50
Benzo (g,h,i) perylene	ND		2.16	1.74		mg/kg dry	-	81	22 - 120	17	50
Benzo (k) fluoranthene	ND		2.16	1.64		mg/kg dry	12	76	28 - 120	22	45
Chrysene	ND		2.16	1.79		mg/kg dry	12	83	20 - 120	20	49
Dibenz (a,h) anthracene	ND		2.16	1.70		mg/kg dry	-	79	12 - 128	13	50
Fluoranthene	ND		2.16	1.59		mg/kg dry	a	73	10 - 143	22	50
Fluorene	ND		2.16	1.53		mg/kg dry	12	71	20 - 120	23	50
Indeno (1,2,3-cd) pyrene	ND		2.16	1.71		mg/kg dry	\$2	79	22 - 121	17	50
Naphthalene	ND		2.16	1.80		mg/kg dry	12	83	10 - 120	18	50
Phenanthrene	ND		2.16	1.69		mg/kg dry	22	78	21 - 122	18	50
Pyrene	ND		2.16	1.88		mg/kg dry	12	87	20 - 123	25	50
1-Methylnaphthalene	ND		2.16	1.30		mg/kg dry	-	60	10 - 120	25	50
2-Methylnaphthalene	ND		2.16	1.60		mg/kg dry	a	74	13 - 120	26	50

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	72		18 - 120
2-Fluorobiphenyl	54		14 - 120
Nitrobenzene-d5	60		17 - 120

Client Sample ID: Matrix Spike Duplicate Prep Type: Total

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 12C3684-DUP1 Matrix: Soil							Client Sample ID: Dup Prep Type	
Analysis Batch: 12C3684							Prep Batch: 12C3	
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
% Dry Solids	83.0		83.7		%		0.8	20

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none] TestAmerica Job ID: NWC2199

GCMS Volatiles

Analysis Batch: V004988 Lab Sample ID **Client Sample ID** Matrix Method Prep Batch Prep Type 12C4640-BLK1 SW846 8260B 12C4640 P Method Blank Total Soil 12C4640-BS1 Lab Control Sample Total Soil SW846 8260B 12C4640_P 12C4640-BSD1 Lab Control Sample Dup Total Soil SW846 8260B 12C4640_P 12C4640-MS1 Matrix Spike Total Soil SW846 8260B 12C4640 P 12C4640-MSD1 Matrix Spike Duplicate Total Soil SW846 8260B 12C4640 P NWC2199-01 376 Aspen SW846 8260B 12C4640_P Total Soil NWC2199-02 375 Aspen Total Soil SW846 8260B 12C4640 P Prep Batch: 12C4640_P Prep Batch **Client Sample ID** Lab Sample ID Prep Type Matrix Method 12C4640-BLK1 Method Blank EPA 5035 Total Soil 12C4640-BS1 Lab Control Sample EPA 5035 Total Soil 12C4640-BSD1 Lab Control Sample Dup Total Soil EPA 5035 12C4640-MS1 Matrix Spike Total Soil EPA 5035 12C4640-MSD1 Matrix Spike Duplicate Total EPA 5035 Soil NWC2199-01 376 Aspen Total Soil EPA 5035 NWC2199-02 375 Aspen Total Soil EPA 5035

GCMS Semivolatiles

Analysis Batch: 12C3626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12C3626-BLK1	Method Blank	Total	Soil	SW846 8270D	12C3626_
12C3626-BS1	Lab Control Sample	Total	Soil	SW846 8270D	12C3626_I
12C3626-MS1	Matrix Spike	Total	Soil	SW846 8270D	12C3626_I
12C3626-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8270D	12C3626_
NWC2199-01	376 Aspen	Total	Soil	SW846 8270D	12C3626_
NWC2199-02	375 Aspen	Total	Soil	SW846 8270D	12C3626_
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
					Prep Batc
12C3626-BLK1	Method Blank	Total	Soil	EPA 3550C	
12C3626-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
12C3626-MS1	Matrix Spike	Total	Soil	EPA 3550C	
2C3626-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 3550C	
WC2199-01	376 Aspen	Total	Soil	EPA 3550C	
NWC2199-02	375 Aspen	Total	Soil	EPA 3550C	

Extractions

NWC2199-02

Analysis Batch: 12C3684

375 Aspen

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12C3684-DUP1	Duplicate	Total	Soil	SW-846	12C3684_P
NWC2199-01	376 Aspen	Total	Soil	SW-846	12C3684_P
NWC2199-02	375 Aspen	Total	Soil	SW-846	12C3684_P
Prep Batch: 12C368	4_P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12C3684-DUP1	Duplicate	Total	Soil	% Solids	
NWC2199-01	376 Aspen	Total	Soil	% Solids	

% Solids

Total

Soil

TestAmerica Job ID: NWC2199

Lab Sample ID: NWC2199-01

Matrix: Soil Percent Solids: 82

Client Sample ID: 376 Aspen Date Collected: 03/12/12 15:00 Date Received: 03/16/12 08:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.840	12C4640_P	03/12/12 15:00	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V004988	03/23/12 15:36	КХС	TAL NSH
Total	Prep	EPA 3550C		0.971	12C3626_P	03/17/12 12:06	KDF	TAL NSH
Total	Analysis	SW846 8270D		1.00	12C3626	03/17/12 21:49	JLS	TAL NSH
Total	Prep	% Solids		1.00	12C3684_P	03/17/12 15:01	ASL	TAL NSH
Total	Analysis	SW-846		1.00	12C3684	03/19/12 09:19	RRS	TAL NSH

Client Sample ID: 375 Aspen

Date Collected: 03/13/12 14:00 Date Received: 03/16/12 08:20

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.990	12C4640_P	03/13/12 14:00	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V004988	03/23/12 16:06	KXC	TAL NSH
Total	Prep	EPA 3550C		0.999	12C3626_P	03/17/12 12:06	KDF	TAL NSH
Total	Analysis	SW846 8270D		1.00	12C3626	03/17/12 22:14	JLS	TAL NSH
Total	Prep	% Solids		1.00	12C3684_P	03/17/12 15:01	ASL	TAL NSH
Total	Analysis	SW-846		1.00	12C3684	03/19/12 09:19	RRS	TAL NSH

Laboratory References:

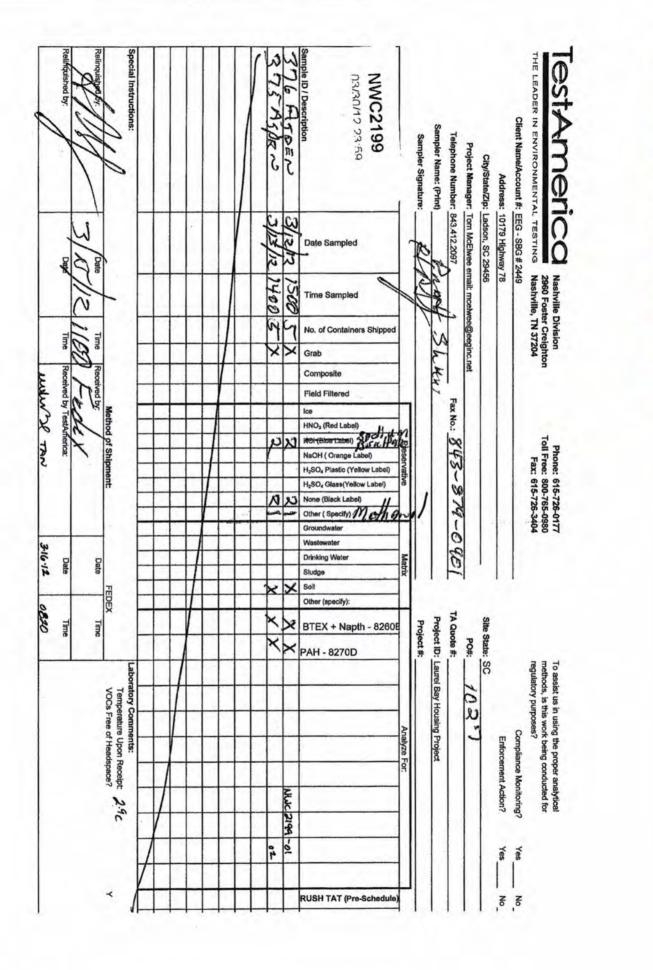
TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980


Certification Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

TestAmerica Job ID: NWC2199

aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Nashville		ACIL		393
estAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
estAmerica Nashville	Alabama	State Program	4	41150
estAmerica Nashville	Alaska (UST)	State Program	10	UST-087
estAmerica Nashville	Arizona	State Program	9	AZ0473
estAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
estAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada		3744
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
stAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	Iowa	State Program	7	131
stAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Kentucky (UST)	State Program	4	19
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Louisiana	NELAC	6	LA110014
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana (UST)	State Program	8	NA
stAmerica Nashville	New Hampshire	NELAC	1	2963
stAmerica Nashville	New Jersey	NELAC	2	TN965
stAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina DENR	State Program	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio VAP	State Program	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	1	LAO00268
stAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	Federal		S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia DEP	State Program	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430
estAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

11

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 376Aspen; 376 Aspen Street, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANKSIZE (GAL)

Steel

280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

<u>1. C. L. C. 2 / 30/12</u> (Name) (Date)

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Description: BEALB376TW01WG20150528

Laboratory ID: QE28007-012 Matrix: Aqueous

Date Sampled:05/28/2015 1750

Date Received: 05/30/2015								
RunPrep Method15030B	Analytical Method 8260B		ysis Date Analys 2/2015 1315 EH1	•	Date	Batch 76315		
Parameter		CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL Units Run
Benzene		71-43-2	8260B	0.45	U	5.0	0.45	0.21 ug/L 1
Ethylbenzene		100-41-4	8260B	0.51	U	5.0	0.51	0.17 ug/L 1
Naphthalene		91-20-3	8260B	0.96	U	5.0	0.96	0.32 ug/L 1
Toluene		108-88-3	8260B	0.48	U	5.0	0.48	0.16 ug/L 1
Xylenes (total)		1330-20-7	8260B	0.57	U	5.0	0.57	0.19 ug/L 1
Surrogate	Q % I		otance nits					
Bromofluorobenzene		95 75	-120					
1,2-Dichloroethane-d4		91 70	-120					
Toluene-d8		98 85	-120					
Dibromofluoromethane		97 85	-115					

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Level 1 Report v2.1

Semivolatile	Organic	Compounds by	y GC/MS (SIM)
--------------	---------	--------------	-----------	------

Client: AECOM - Resolution Consultants	
--	--

Description: BEALB376TW01WG20150528

Date Sampled:05/28/2015 1750

Laboratory ID: QE28007-012

Matrix: Aqueous

Date Received: 05/30/2015

RunPrep Method13520C	Analytical Metho 8270D (SIN		ysis Date Analy 2/2015 1723 RBF	•		Batch 30 76221				
Parameter		CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Rur
Benzo(a)anthracene		56-55-3	8270D (SIM)	0.39		0.20	0.040	0.019	ug/L	1
Benzo(b)fluoranthene		205-99-2	8270D (SIM)	0.19	J	0.20	0.040	0.019	ug/L	1
Benzo(k)fluoranthene		207-08-9	8270D (SIM)	0.064	J	0.20	0.040	0.024	ug/L	1
Chrysene		218-01-9	8270D (SIM)	0.27		0.20	0.040	0.021	ug/L	1
Dibenzo(a,h)anthracene		53-70-3	8270D (SIM)	0.080	U	0.20	0.080	0.040	ug/L	1
Surrogate	Q %		otance nits							
2-Methylnaphthalene-d10		75 15	-139							
Fluoranthene-d10		86 23	-154							

Q = Surrogate failure PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL J = Estimated result < PQL and \geq MDL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure S = MS/MSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Level 1 Report v2.1

Appendix D Regulatory Correspondence

DHEC

PROMOTE PROTECT PROSPER Catherine B. Templeton, Director

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA

Laurel Bay Underground Storage Tank Assessment Reports for: *See attached sheet*

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

DHEC

PROMOLE PROTECT PROSPER

Catherine B. Templeton, Director

Attachment to: Krieg to Drawdy Subject: IGWA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks)

137 Laurel Bay Tank 2	387 Acorn
139 Laurel Bay	392 Acorn Tank 2
229 Cypress Tank 2 ·	396 Acorn Tank 1
261 Beech Tank 1 •	396 Acorn Tank 2
261 Beech Tank 3	430 Elderberry
273 Birch Tank 1 🔹	433 Elderberry
273 Birch Tank 2	439 Elderberry
273 Birch Tank 3	440 Elderberry
276 Birch Tank 2 ·	442 Elderberry
278 Birch Tank 2	443 Elderberry
291 Birch Tank 2	444 Elderberry Tank 1
300 Ash -	445 Elderberry
304 Ash •	446 Elderberry
314 Ash Tank 1	448 Elderberry
314 Ash Tank 2	449 Elderberry
322 Ash Tank 2 *	451 Elderberry
323 Ash *	453 Elderberry
324 Ash *	456 Elderberry Tank 1
325 Ash Tank 1 -	456 Elderberry Tank 2
325 Ash Tank 2	458 Elderberry Tank 1
326 Ash -	458 Elderberry Tank 3
336 Ash •	464 Dogwood
339 Ash •	466 Dogwood
343 Ash Tank 1 *	467 Dogwood
344 Ash Tank 1	468 Dogwood
348 Ash *	469 Dogwood
349 Ash Tank 1	471 Dogwood Tank 2
353 Ash Tank 1	471 Dogwood Tank 3
362 Aspen	475 Dogwood Tank 1
376 Aspen *	475 Dogwood Tank 2
380 Aspen	516 Laurel Bay Tank 1 (UST#03747)
383 Aspen Tank 2 ^a	518 Laurel Bay

2600 Bull Street * Columbia, SC23201 * Phone; (803) SDS 34.52 * www.sedhee.gow

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks) cont.

531 Laurel Bay	1219 Cardinal
532 Laurel Bay	1272 Albatross
635 Dahlia Tank 2	1305 Eagle
638 Dahlia	1353 Cardinal
640 Dahlia Tank 1	1356 Cardinal
640 Dahlia Tank 2	1357 Cardinal
645 Dahlia	1359 Cardinal
647 Dahlia	1360 Cardinal
648 Dahlia Tank 2	1361 Cardinal
650 Dahlia Tank 1	1368 Cardinal
650 Dahlia Tank 2	1370 Cardinal Tank 1
652 Dahlia Tank 1	1377 Dove
652 Dahlia Tank 2	1381 Dove
760 Althea	1382 Dove
763 Althea	1384 Dove
771 Althea	1385 Dove
927 Albacore	1389 Dove
1015 Foxglove	1391 Dove
1046 Gardenia	1392 Dove
1062 Gardenia Tank 2	1393 Dove Tank 1
1070 Heather	1393 Dove Tank 2
1072 Heather	1406 Eagle
1102 Iris Tank 1	1407 Eagle Tank 1
1107 Iris	1411 Eagle Tank 1
1126 Iris	1411 Eagle Tank 2
1129 Iris	1412 Eagle
1132 Iris	1413 Albatross
1133 Iris Tank 1	1414 Albatross
1138 Iris	1422 Albatross
1144 Iris Tank 1	1425 Albatross
1144 Iris Tank 2	1426 Albatross
1148 Iris Tank 1	1432 Dove
1148 Iris Tank 2	1434 Dove
1161 Jasmine	1436 Dove
1167 Jasmine	1438 Dove Tank 1
1170 Jasmine	1440 Dove
1190 Bobwhite	1442 Dove Tank 1
1192 Bobwhite	

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

February 22, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-May and June 2015 Laurel Bay Military Housing Area Multiple Properties Dated October 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 52 stated addresses. For the remaining 91 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

LINT

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016

Draft Final Initial Groundwater Investigation Report for (143 addresses)

273 Birch Drive	1192 Bobwhite Drive
325 Ash Street	1194 Bobwhite Drive
326 Ash Street	1272 Albatross Drive
336 Ash Street	1352 Cardinal Lane
343 Ash Street	1356 Cardinal Lane
353 Ash Street	1359 Cardinal Lane
430 Elderberry Drive	1360 Cardinal Lane
440 Elderberry Drive	1362 Cardinal Lane
456 Elderberry Drive	1370 Cardinal Lane
458 Elderberry Drive	1382 Dove Lane
468 Dogwood Drive	1384 Dove lane
518 Laurel Bay Blvd	1385 Dove Lane
635 Dahlia Drive	1389 Dove Lane
638 Dahlia Drive	1392 Dove Lane
640 Dahlia Drive	1393 Dove Lane
647 Dahlia Drive	1407 Eagle Lane
648 Dahlia Drive	1411 Eagle Lane
650 Dahlia Drive	1418 Albatross Drive
652 Dahlia Drive	1420 Albatross Drive
760 Althea Street	1426 Albatross Drive
1102 Iris Lane	1429 Albatross Drive
1132 Iris Lane	1434 Dove Lane
1133 Iris Lane	1436 Dove Lane
1144 Iris Lane	1440 Dove Lane
1148 Iris Lane	1442 Dove Lane
1186 Bobwhite Drive	1444 Dove Lane
·	
No Fur	ther Action recommendation (91 addresses):
137 Laurel Bay Blvd	771 Althea Street
139 Laurel Bay Blvd	927 Albacore Street
229 Cypress Street	1015 Foxglove Street
261 Beech Street	1046 Gardenia Drive
276 Birch Drive	1062 Gardenia Drive
278 Birch Drive	1070 Heather Street
291 Birch Drive	1072 Heather Street

300 Ash Street	1107 Iris Lane	
304 Ash Street	1126 Iris Lane	
314 Ash Street	1129 Iris Lane	
322 Ash Street	1138 Iris Lane	
323 Ash Street	1161 Jasmine Street	
324 Ash Street	1167 Jasmine Street	
339 Ash Street	1170 Jasmine Street	
344 Ash Street	1190 Bobwhite Drive	
348 Ash Street	1219 Cardinal Lane	
349 Ash Street	1305 Eagle Lane	
362 Aspen Street	1353 Cardinal Lane	
376 Aspen Street	1354 Cardinal Lane	
380 Aspen Street	1357 Cardinal Lane	2 hale
383 Aspen Street	1361 Cardinal Lane	
387 Acorn Drive	1364 Cardinal Lane	
392 Acorn Drive	1368 Cardinal Lane	
396 Acorn Drive	1377 Dove Lane	
433 Elderberry Drive	1381 Dove Lane	
439 Elderberry Drive	1391 Dove Lane	
442 Elderberry Drive	1403 Eagle Lane	
443 Elderberry Drive	1404 Eagle Lane	
444 Elderberry Drive	1405 Eagle Lane	
445 Elderberry Drive	1406 Eagle Lane	
446 Elderberry Drive	1408 Eagle Lane	
448 Elderberry Drive	1410 Eagle Lane	
449 Elderberry Drive	1412 Eagle Lane	
451 Elderberry Drive	1413 Albatross Drive	
453 Elderberry Drive	1414 Albatross Drive	
464 Dogwood Drive	1417 Albatross Drive	
466 Dogwood Drive	1421 Albatross Drive	
467 Dogwood Drive	1422 Albatross Drive	100
469 Dogwood Drive	1425 Albatross Drive	
471 Dogwood Drive	1427 Albatross Drive	
475 Dogwood Drive	1430 Dove Lane	
516 Laurel Bay Blvd	1432 Dove Lane	
531 Laurel Bay Blvd	1438 Dove Lane	
532 Laurel Bay Blvd	1453 Cardinal Lane	
645 Dahlia Drive	1455 Cardinal Lane	
763 Althea Street		

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016, Page 2